JNTU ONLINE EXAMINATIONS [Mid 2 - oc]

- 1. The ratio $\left(\frac{n_1-n}{n_1+n}\right)$ is known as ______, where n,n₁ are refractive index [01D01]
 - a. Incidence coefficient
 - b. Reflection coefficient
 - c. Zero coefficient
 - d. Transmission coefficient
- 2. A Ga As optical source with a refractive index of 3.6 is coupled to a Silica Fiber that has a refractive index of 1.48. If the Fiber end and the source are in close physical contact, then the Fresnel reflection at interface is _______[01D02]
 - a. 2
 - b. 0.25
 - c. 0.2
 - d. 0.174
- 3. The emission pattern for a lambertion source ______relation ship [01M01]
 - a. $B((\theta, \phi) = B_0 \cos \theta$
 - b. $B(\theta, \phi) = B_0 \sin \theta$
 - c. $B(\theta, \varphi) = B_0 \tan \theta$
 - d. $B(\theta, \phi) = B_0 \sec \theta$
- 4. The output beam from a laser diode allows significantly more light to be coupled in to an optical Fiber [01M02]
 - a. Bulk
 - b. Narrower
 - c. Thick
 - d. Discontinuous
- 5. The freshed reflection or the reflectively at the Fiber core end Face is ______ [01M03]
 - $\mathbf{a.} \quad R = \left(\frac{n_1 n}{n_1 + n}\right)^2$
 - b. $R = \left(\frac{n_1 n}{n_1}\right)^2$
 - $R = \frac{n_1 n}{n_1 + n}$
 - d. $R = \frac{n_1}{n}$
- 6. The amount of optical power emitted from a source that can be coupled in to Fiber is usually given by ______[01S01]
 - a. Normal efficiency
 - b. Coupling efficiency
 - c. Process of coupling
 - d. Fly lead
- 7. The ratio of power coupled in to the Fiber (P_F) and the power emitted from the light source (Ps) is known as ______ [01S02]
 - a. Efficiency
 - b. Fly lead
 - c. Coupling efficiency
 - d. Coupling
- 8. _____ is the optical power radiated in to a unit solid angle per unit emitting surface area [01S03]

	a. Radianceb. Incidencec. Reflectiond. Transmission	
	 Surface emitting L E D'S are characterized by lamberti is equally bright when viewed from any	an output pattern, which means the source[01S04]
	a. Directionb. Glassc. Y, Z directiond. Incidence	
1		uare centimeter per steradian [01S05]
	a. Incidenceb. Reflection	
	c. Transmission d. Radiance	
stal. 1	 The number of modes that can propagate in a graded is[02D01] 	index Fiber of core size a and index profile a
	a. $M = \frac{\alpha}{\alpha + 2} \left(\frac{2\pi a n}{\lambda} \right)^2 \Delta$	
	b. $M = \frac{\alpha}{2} \left(\frac{2\pi a n_{\star}}{\lambda} \right)^2 \Delta$	
	c. $M = \alpha^2 \Delta^2 n$, d. $M = \alpha^2 2\pi a n$, Δ	
« A	r O	g area of the source to match exactly the
Stal.	core area of the Fiber end Face [02M01] a. Micro lens b. Mirror	41519
	c. Operator d. Fiber	
1	 3. The value of reflectivity corresponds to a reflection pe into the source is given by equation [a. P coupled = (1-R) P emitted b. P coupled = R P emitted c. P coupled = P emitted 	
	d. P coupled = R^2 Pemitted	
star d	4 Can be reduced by having an index - n the Fiber end [02S02] a. Output power	natching material between the source and
	b. Power loss indecibelsc. Power in wattsd. Power loss in watts	
1	 5. The optical power launched in to a Fiber depend up on a. Wave length b. Brightness c. Incidence d. Reflection 	the of the source [02S03]
1	6. The radiated power per mode, $\frac{P_s}{M}$ is given as	[02S04]
	a. B _o λ	
	b. $B_0 \lambda^2$ c. $B_0^2 \lambda^2$	
	d. $B_0^2 \lambda$	
	WWW.	

17.	Two identically sized sources operating at different wave lengths but havin	-
	will launch amounts of optical power into the same Fiber [0] a. Different	2805]
	b. Equal	
	c. Decreasing	
	d. Increasing	
10	The degree of mode coupling according to a Fibou is animosible a function of	[02506]
18.	The degree of mode coupling occuring in a Fiber is primarily a function of _ a. Core -cladding index difference	[02S06]
	b. Coupling	
	c. Fiber	
	d. Wave length	
40	The second secon	
19.	If the emitting area of the source is smaller than the core area, a miniatur	e iens may be piaced
	between the source and the Fiber to improve the [02S07] a. coupling	
	b. Fiber quality	
	c. Wave length	
	d. Power coupling efficiency	
20.	is most officient lensing mostled [02000]	
20.	a. Lens	
	b. Mirror	
	c. Non imaging micro scope	
	d. Microscope	
24		1 4.
21.	Separation occurs when the Fibers have the same axis be their end Faces [03D01]	ut nave a gap between
	a. Lateral	
	b. Angular	
	c. Longitidinal	
	d. Circular	
	Fiber to Fiber condition loss (L.) alors in terms of Fiber to Fiber condition	
22.	Fiber -to -Fiber coupling loss (L _F) given in terms of Fiber -to -Fiber coupling	g efficiency (n _F) is
	[03M01]	
	a. L _F = -1olog n _F	
	b. $L_F = -20 \log n_F$	
	c. $L_F = n_F$	
	d. $L_{\rm F} = 10 \rm n_{\rm F}$	
	, /// // // // // // // // // // // // /	
23.	Dash missing offset reduces the common -core area of the two Fiber end F	aces [03M02]
	a. Axial	
	b. Lateral	
	c. Longitidinal d. Angular	
	9	
24.	A light source is often supplied with a short Fiber attached t	to it in order to
	Facilifate coupling the source to a system Fiber [03S01]	
	a. Fly lead b. Cut	
	c. Squashed	
	d. Convex mirror	
25.	The best coupling efficiency is achieved by method [03S02]	
	a. LED b. lens	
	c. Direct - Butt	
	d. Microscopic	
26.	The Fiber to Fiber coupling efficiency is the ratio of common mode volume	to
	[03S03] a. Number of modes in the emitting Fiber	
	b. Area	
	c. Fiber	
	d. Fiber cladding	
27	: 10116	112119
27.	The optical power in concentrated atof the Fiber core [03S0	141

	a. Outer		
	b. Inner diameterc. External to Fiber		
	d. Near the center		
28.	_ losses resul	t from mechanical mis alignments because th	e radiation core of the
	emitting Fiber does not m	atch the acceptance cone of the receiving Fib	
	a. Absorptionb. Convection		
	c. Radiation		
	d. Conduction		
29.	mis alignme	nt results when the two axes Form an angle s	so that the Fiber end Faces
	are no longer parallel [03	S06]	
	a. Lateral b. Angular		
	c. Longitidinal		
	d. Axial		
30.	The most common mis ali	gnment which causes the greatest power loss	s is
	[03S07]		
	a. Lateral b. Angular		
	c. Longitidinal		
	d. Axial		
31.	Normal cut off wave length	th of germanium semiconductor is	[04D01]
	a. 2.86 µ m		
	b. 1.6μ m c. 3.2μ m		
	d. 5.2µm		
22		ists of p and n regions separated by a very	doped
32.	intrinsic region [04M01]	ists of p and if regions separated by a very	doped
	a. Electron		
	b. Lightly n		
	c. Lightly p d. Lightly n&p		
33	In nin photo diade the tin	ne it takes for an electron or hole to recombin	ae is known
33.	as[04M02]		ie is kilowii
	a. Life time		
	b. Lifec. Carrier life time		
	d. Depletion time		
34.	Normal cut off wavelengt	h of silicon semiconductor is	[04M03]
3 11	a. 1.06 µm	2 019	[065]
	b. 2μm		
	c. 1.5µm d. 3.2µm		
		10MUIT	· · · · · · · · · · · · · · · · · · ·
35.	optical power into a corre	minescent power Falling up on it and converts espondingly varying electric current [04S01]	s the variation of this
	a. Photo detector	are a sure of the	
	b. Multipliers		
	c. Diodesd. Transistors		
36.	Consists a pho [04S02]	to cathode and an electron multiplier package	ed in a vacuum tube
	a. Photo multiplier		
	b. Multipliers		
	c. Diodesd. Transistors		
-		41214	
37.	Large size and [04S03]	requirements make them unsuitable fo	
	.1.		

	a. Weight b. High voltage c. Low gain	
	d. Low noise	
38.	Pyro electric photo detectors involve the conversion of	to heat [04S04]
	a. Electrons	1/3/1/0
	b. Charges c. Photons	
	d. Atoms	
		$M_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_$
39.	is used almost exclusively for Fiber optic system material high sensitivity and fast response time [04S05]	s because of its small size, suitable
	a. Electrons	
	b. Pyroelectric	
	c. Multipliers d. Photo diode	
	d. Photo diode	
40.	In Pin - photo detector, the process that general Free electro	on - hole pairs are called as
	[04S06] a. Diffusion	
	b. Photo carriers	
	c. Electrons	
	d. Ions	
41.	The units of band gap energy (E _q)of the material is	[04S07]
	a. Volts	- //-
	b. Amperes	
	c. Watts	
	d. Electron volts	
42.	A silicon avalanche photo diode has a Quantum efficiency of	65% at a wave length at 900nm.
	Suppose 0.5 µw of optical power produces a multiplied photo	o current of calculate the
	multiplication M [05D01] a. 10	
	b. 20	
	c. 33	
	d. 43	
43.	In a 100ns pulse, 6x10 ⁶ photons at a wave length of 1300 n	m fall on an InGaAS photo detector.
	on the average, 5.4x10 ⁶ electron - hole pairs are generated	
	[05M01]	
	a. 10%	
	b. 60% c. 50%	
	d. 90%	
· · · · · · · · · · · · · · · · · · ·	The comics aculticlication acceptance in Auglewaha, whatedis-	Assis Imanimas
44.	The carrier multiplication mechanics in Avalanche- photodioc [05M02]	des is known as
	a. High energy level	
	b. Impact Ionization c.	
	Thermal breakdown d. Circuit breakdown	
	Circuit breakdown	
45.	The average number of electron -hole pairs created by a carr	rier per unit distance travelled is
	called as[05M03] a. Ionization rate	
	b. Thermal rate	
	c. Break down	
	d. Multiplication rate	
46.	is the number of the electron - hole carrier pairs	generated per incident photon of
	energy [05S01]	
	a. Quantum efficiency	
	b. Electron efficiencyc. Rise time	
	d. Speed	
	N U O	

	To achieve high quantum efficiency, the fraction of the incident light to be absoluted as Deplection layer	
	b. Avalanche	
	c. Wave length	
	d. Quantum	
40	The manifestation of a substantial district	them about the Corcoll
48.	The performance of a photo diode is of	ten characterized by the [05S03]
	a. Deplection layerb. Quantum layer	
	c. Responsivity	
	d. Incident	
49.		e primary signal photo current before it enters the input
	circuitry of the following amplifier [05:	S04]
	a. Pin photo diode	
	b. Avalanche photo diode c. Diode	
	d. Transistor	
	d. Hansistoi	
50.	The phenomenon of impact ionization t	to gaining high energy which is accelerated by the high
	electric field is[05S05]	
	a. Ionization	
	b. Avalanche effect	
	c. Thermal effect	
	d. Break down effect	
51.	The multiplication (M) for all carriers g [05S06]	generated in the photo diode is defined as
	,	
	a. ^I <u>M</u>	
	I_n	
	b. <u>1</u>	
	<i>I.</i> ,	
	I_p	
	м _m	
	I_p c. M_m d. $I_M \cdot I_P$	
52	d. I _M .I _P	the output of an ontical receiver is defined by
52.	d. I_{M} I_{P} The power signal-to-noise ratio \underline{S} at	the output of an optical receiver is defined by
52.	d. I_{M} I_{P} The power signal-to-noise ratio $\dfrac{S}{N}$ at	the output of an optical receiver is defined by
52.	d. $I_M . I_P$ The power signal-to-noise ratio $\frac{S}{N}$ at [06M01]	
52.	d. I_{M} I_{P} The power signal-to-noise ratio $\dfrac{S}{N}$ at	
52.	d. $I_M \cdot I_P$ The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. Signal power from pho	to current
52.	d. $I_M.I_P$ The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power+and of the power of the power$	to current nplifier noise power
52.	d. $I_M \cdot I_P$ The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. Signal power from pho	to current nplifier noise power
52.	d. $I_M \cdot I_P$ The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{Photo\ current}$	to current nplifier noise power
52.	d. $I_M \cdot I_P$ The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power+an}$ b. $\frac{photo\ current}{efficiency+noise}$	to current nplifier noise power
52.	d. $I_M.I_p$ The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power+an}$ b. $\frac{photo\ current}{efficiency+noise}$	to current nplifier noise power
52.	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power+an}$ b. $\frac{photo\ current}{efficiency+noise}$ c. $\frac{current}{}$	to current nplifier noise power
52.	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$	to current nplifier noise power
52.	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power+an}$ b. $\frac{photo\ current}{efficiency+noise}$ c. $\frac{current}{}$	to current nplifier noise power
52.	$\begin{array}{ll} \text{The power signal-to-noise ratio} & \frac{S}{N} \text{ at} \\ \textbf{[06M01]} \\ \textbf{a.} & \frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an} \\ \textbf{b.} & \frac{photo\ current}{efficiency\ +\ noise} \\ \textbf{c.} & \frac{current}{noise\ power\ +\ amplifier\ power} \\ \textbf{d.} & \frac{voltage}{} \end{array}$	to current nplifier noise power
52.	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$	to current
	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$	to current nplifier noise power
	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01]	to current aplifier noise power
	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01] a. good optical signals	to current aplifier noise power
	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01] a. good optical signals b. very weak optical signals	to current uplifier noise power the photo diode is generally required to detect
	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01] a. good optical signals b. very weak optical signals c. high signals	to current uplifier noise power the photo diode is generally required to detect
	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01] a. good optical signals b. very weak optical signals	to current uplifier noise power the photo diode is generally required to detect
53.	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01] a. good optical signals b. very weak optical signals c. high signals d. photons	to current uplifier noise power the photo diode is generally required to detect
53.	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01] a. good optical signals b. very weak optical signals c. high signals d. photons The photo detector should have	to current uplifier noise power the photo diode is generally required to detect
53.	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01] a. good optical signals b. very weak optical signals c. high signals d. photons The photo detector should have a. low efficiency	to current uplifier noise power the photo diode is generally required to detect
53.	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01] a. good optical signals b. very weak optical signals c. high signals d. photons The photo detector should have	to current uplifier noise power the photo diode is generally required to detect
53.	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01] a. good optical signals b. very weak optical signals c. high signals d. photons The photo detector should have a. low efficiency	to current uplifier noise power the photo diode is generally required to detect
53.	The power signal-to-noise ratio $\frac{S}{N}$ at [06M01] a. $\frac{Signal\ power\ from\ pho}{Photo\ dectector\ noise\ power\ +\ an}$ b. $\frac{photo\ current}{efficiency\ +\ noise}$ c. $\frac{current}{noise\ power\ +\ amplifier\ power}$ d. $\frac{voltage}{current}$ In Fiber optic communication systems, [06S01] a. good optical signals b. very weak optical signals c. high signals d. photons The photo detector should have a. low efficiency	to current uplifier noise power the photo diode is generally required to detect

	c. high power d. high quantum efficiency	
55.	the photo detector and amplifier noises should be kept a. high b. low c. constant d. infinte	as as possible [06S03]
56.	The of a photo detector in an optical fiber conterms of minimum detectable optical power [06S04] a. efficiency b. output power c. sensitivity d. selectivity	ommunication system is describable in
57.	noise arises from the statistical nature the pwhen an signal is incident on a photo detector. [06S05 a. Quantum b. Dark current c. Fluctuations d. Leakage current	
58.	The quantum noise current has a mean square value in the average value of the[06S06] a. voltage b. power c. photo current d. leakage current	a bandwidth B which is proportional to
59. 3tar.of	Thenoise is the current of the continuous to flowhen no light is incident on the photodiode [06S07] a. quantum b. photodiode dark current c. fluctuations d. leakage current	ow through the bias circuit of the device
60.	The bulk dark current is directly proportional to the a. surface area b. power c. current d. quantum	[06S08]
61.	The mechanism of an avalanche photodiode i a. surface b. current c. quantum d. gain	s temperature sensitive [06S09]
62.	1040	wave length region [07D01] e is[07M01]
	The normal wave length range of silicon pin photodiod a. 100-300 nm b. 300 nm c. 400-1100 nm d. 600-8000 nm	
	The wave length range of Germanium avalanche photo a. 800-1650 nm b. 300-800 nm c. 400-1100 nm d. 500-600 nm	
65.	The Dark current of Germanium pin photodiode isa. 300-1000 nA	[07501]

	b. 50-500 nA
	c. 0-10 nA d. 300-2000 nA
66	The Band width of InGaAS pin photodiode is [07S02]
00.	a. 10-20 GHZ
	b. 6-20 GHZ
	c. 1-2 GHZ d. 0 to 25 GHZ
67	The Band width of Germanium avalanche photodiode is [07S03]
07.	a. 3-100 GHZ
	b. 2-10 GHZ c. 3-80GHZ
	d. 50-250 GHZ
68.	The rise time for silion pin photodiodes is [07S04]
O_{I}	a. 2-3 ns
	b. 0.5-1 ns c. 10-30 ns
	d. 50-100 ns
69.	the Bias voltage for InGaAs pin photodiode is [07S05]
	a. 10 V
	b. 1000 V c. 5V
	d. 300 V
70.	the Bias voltage for Si avalanche photodiodes is [07S06]
	a. 30 V
	b. 200 V c. 150-1000 V
	d. 150-400 V
71.	Forapplications, Si devices operaing around 850 nm provide inexpensive solutions for
	most links [07S07]
	a. long distance b. short distance
	c. less gain
	d. less voltage
72.	Normally for langer links based photo diodes are used [07S08] a. Si
	b. Ge
	c. In Ga AS d. Si Ge
~1	
73.	The most useful criteria for measuring the performance of a digital communication system is[08M01]
	a. desigin engineer
	b. average error probabilityc. system design
	d. error filtering pattern
74.	provides a larger gain factor and a broder band width [08M02]
	a. transmitter
	b. receiver c. source
	d. optical pre amplifier
75.	An consists of a photo detctor, an amplifier and signal processing circuitry [08S01]
	a. optical source
	b. transmitter c. optical receiver
	d. energy device
76.	converts the optical energy from the fiber in to an electrical signal [08S02]
	a. conductor b. electrons
	a. conductor b. electrons

	c. photo transistor d. photo detector		
377.	Most of the fiber optic systems use as a. Analog b. Two-level binary digital c. Discrete d. Non-periodic	signal [08S03]	
78.	the transmitted signal is a two-level binary data st slot of duration T _b and this time slot is referred as a. duration b. bit period c. Quantum d. Data line		
79.	the optical signal that gets coupled from the light:as it propogates along the fiber wave guide a. simplified b. binary format c. distorted d. linear		
80.	A decision circuit compares the signal in each time thelevel [08S06] a. zero b. infinite c. unknown d. threshold	e slot with a certain reference voltage known as	
Star. of	Optical amplifier is placed a head of the photo dioc photo detection [08S07] a. boost b. lessen c. zero level d. introduce noise in	de tothe optical signal level before	
82.	Optical amplifier is placed such that d receiver electronics can be suppressed [08508] a. gain b. signal c. signal to noise ratio d. input	egradation caused by thermal noise in the	
83.	In avalanche photodiode, the additional shot noise a. current b. avalanche gain c. voltage d. power rating	e arises from [09M01]	
84.	Thermal noises are of nature, so they can [09M02] a. Fardays b. Max wells c. Gaussian d. Avalanche	be readily treated by standard techniques	
85.	The term is used customarily to descrit that tend to disturb the transmission [09S01] a. Signal b. noise c. transmitter d. receiver	be unwanted components of an electrical signal	
86.	The noise is caused by theof current of a. Signal b. Value c. Spontaneous Fluctuations	or voltage in electric circuits [09S02]	

	d. Receiver	
. O.1	9	
87.		c device because of the discrete natur of current flow in the
	device [09S03]	
	a. shot	
	b. thermal	
	c. error	
	d. detectron	
88.	noise arises from the rado	m motion of electrons in a conductor [09S04]
66.	a. shot	in motion of electrons in a conductor [09304]
	b. thermal	
	c. detectron	
	d. amplifier	
	a. ampinier	
89.	The random arrival rate of	_ produces a quantum on shot noise in the photo detector
	[09S05]	
	a. electrons	
	b. current	
	c. signal photons	
	d. charges	
		1901
90.		shot noise due to statistical nature of the multiplication
	process [09S06]	
	a. Pin	
	b. Avalanche	
	c. Current	
	d. Dark current	
91.	Other than quantum and thermal no	ise the additional photo detector noises come from the
	and [09S07]	
	a. detection, current	
	b. dark current, thermal current	
	c. dark current, leakage current	
	d. bias resistor, dark current	
92.		ctor load resistor and from the amplifier electronics tend to
	• •	gnal to noise ratio when a pin photodiode is used [09S08]
	a. thernal	
	b. quantum	
	c. bias	
	d. friction	
93.	The binary digital pulse train incide	nt on the photo detector can be given as [10D01]
		·
	a. $P(t) = \sum_{a}^{\infty} b_{n} h_{p} (t - n T_{b})$	
	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	b. $P(t)=b_n h_n$	
	υ. Τ (t) – υ _n τι _p	
	S 7/2 \(\frac{\pi}{\pi}\) 1 1	
	c. $P(t) = \sum b_n h_p$	
	X=−α′	
	d. $P(t)=e^{-t}$ sinwt	
94.		ion is a shaping filter [10M01]
	a. linear frequency	
	b. voltage	
	c. current	
	d. heat	
95	The primary photo current generate	by the photodiode is a poisson's process resulting
95.	from the random arrival of photons	
	a. constant	
	b. time varying	
	c. instant	
	d. fixed time	
96.	If the detector is illuminated by an	optical signal P(t) then the average number of electron-hole

WWW.

	pairs \bar{N} generated in a time z is[10S02]	
	a. $\frac{\eta E}{h \upsilon}$ b. $\frac{E}{}$	
	c. $\frac{E}{g}$	
	d. $\frac{\eta E}{\mathcal{G}}$	
97.	source error results from pulse spreading in the optical f a. Interference b. Noise c. Quantum d. Inter symbol Interference	iber [10S03]
98.	The mean gain for a pin photo diode is[10S04] a. 0 b. 2 c. 1 d. infinite	
99.	The amplifying function in a photo diode is represented by the which is characterized by a [10S05] a. impedance b. transconductance c. reactance	e voltage-controlled current source
U 1	d. voltage	C+7
100.	The input noise current source arises from the of t [10S06] a. quantum b. speak noise c. thermal noise d. wave noise	the amplifier input resistance
101.	The equalizer in Receiver configuration is used to mitigate the interference [10507] a. voltage b. current c. signal distortion	e effects ofand inter symbol
102	In some cases, may be used to correct the electri	s frequency response of the photo
102.	detector and the amplifier [10S08] a. equalizer b. transmitter c. photo detector d. amplifier	Size of the photo
103.	The high impedance pre amplifier produces a large input a. R b. C c. RC d. $\frac{R}{C}$	time constant [11D01]
104.	typical error rates for optical fiber telecommunication system [11M01] a. 10^3 to 10^5 b. 10^{-9} to 10^{-12}	s range from to

	d. 10 ⁻⁹ to 10 ⁻²⁵	
105	For unbiased data with equal probability of 1 and 0 occurences, a	a=h= in error probility
103.	[11M02]	in error problincy
	a. 1 b. 0.6	
	c. 0	
	d. 0.5	
106.	The ratio of number of errors occuring over a time intervolt by the transmitted during this interval is [11S01]	e number of pulses(Nt)
	a. Bit-error rate	
	b. Pulses c. Count	
	d. Efficiency	
107.	The error rate depends onat the receiver [11S02]	
	a. Signal b. Noise	
	c. Signal to noise ratio	
	d. Type	
108.	To compute the bit error rate at the receiver we have to known t	he of the signal at the
	equalizer output [11S03] a. type	
	b. probability distribution	
	c. nolse d. count	
109.	If a signal S is the gaussian probability distribution function	_ is usd to measure the
	width of the probability distribution [11S04]	
	a. variance b. standard deviation	
	c. Mean	
	d. Parabolic	Hallo,
110.	Theis widely used to specify receiver performance since noise ratio required to achieve a specific bit-error rate [11S05]	it is related to the signal-to-
	a. error probability	
	b. φ-parameterc. variance	
	d. noise	
111.	The signal-to-noise ratio at which the transition occur is called the	ne [11S06]
	a. Threshold level b. Inching effect	
	c. Biasing point d. Link level	
Corr		
112.	The low impedance pre-amplifier do not provide a rec	eiver sensitivity [11S07]
	b. high	
	c. zero d. equal	
113.	The transmitted optical power in the amplitude modulaion form is	s [12M01]
	a. $P(t) = P_t[1 + s(t)]$.
	b. $P(t) = P_t[1 + ms(t)]$	
	c. $P(t) = P_t ms(t)$	
	d. P(t)=0	
114.	For a Analog receiver, the performance fidelity is measured in ter [12S01]	
	a. Noise	
	b. Signal-to-Noisec. Frequency	
	IN O	

	d. Source	
115.	. Signal to Noise ratio is defined as the ratio of the mean-square signal current to the	
	[12S02] a. Noise	
	b. Interference	
	c. Mean-Square noise current	
	d. Impulse current	
116.	. Analog technique is to use amplitude modulation of the[12S03] a. source	
	b. receiver	
	c. noise d. power	
	·	
117.	is the ratio of variation in current about the bias point to the input drive current [12504]	
	a. modulation index	
	b. noise-signal c. power relation	
	d. signal current	
118.	. In order not to introduce distortion in to the optical signal, the modulation must be confined to	
	theregion [12S05]	
	a. Bias b. Linear	
	c. Unlinear	
	d. Power	
119.	. In analog receivers, the signal of the photo diode output current and inversely proportional to the of the circuit [12S06]	
	a. thermal noise	
	b. source	
	c. impulse d. frequrncy	
120	. For large optical incident on a pin photodiode, thenoise associated with the signal	
120.	detection process dominates [12S07]	
	a. quantum	
	b. bit rate c. thermal	
	d. band width	
121.	. When an avalanche photodiode is employed at low signal levels and with low values of gain M.	
	theterm dominates [12S08] a. quantum	
	b. circuit noise	
	c. thermal d. bit-rat	
122.	. For a given set of operating conditions in avalanche photo diode, the optimum value of the avalanche gain, the signal to noise ratio is [12S09]	
	a. small	
	b. maximum c. zero	
	d. infinite	
123.	. For low signal levels anPhotodiode yields a higher signal to noise ratio [12S10]	
	a. Pin	
	b. Avalanchec. Pyroelectric	
	d. Multipliers	
124.	. For large received optical power levels aphoto diode gives better performance [12S11]	
	a. Pin b. Avalanche	
	b. Avalanche c. Pyroelectric	
	d. Multiplier	
	b. Avalanche c. Pyroelectric d. Multiplier	

125.		pe extracted from the combined frequency division at the receiver terminal [13M01]
	a. time sharing	
	b. electrical filteringc. bands	
	d. energy levels	
126.	multiplexing technique i	requires an increase in the number of opticl components and therefore has not been widely used [13M02]
127.	The dominant design criteria for a spo	ecific application using either digital or analog transmission
	techniques areand	_[13S01]
	a. transmission distance, rate of info	rmation transfer
	b. distance delay	
	c. delay, non periodicd. peridic, non periodic	
	d. periale, fion periodic	
128.	to serval signals on to a sing	transfer over an opticl fiber communication link it is usual le fiber [13S02]
	a. de multiplex	
	b. multiplexc. grouped	
	d. tied	
129.		y be extended to multi channel operation by
	multiplexing [13S03] a. Time division	
	b. Pulse	
	c. Source	
	d. Signal receiver	
		112167 1216
130.	and each signal is arrigned one of the a. Time division b. Pulse division c. Frequency division	nannel band width is divided in to a non over lapping bands see bands of frequencies [13S04]
	d. Signal	
131.	with[13S05] a. Optical filters b. Suppressors	ultiplexes signals (ie wave length separation) is performed
	c. dividers d. Multi channel	
	d. Multi Channel	
132.	single fiber is known asmulti	t involve the application of several message signls on to plexing [13S06]
	a. source	
	b. signal c. power	
	d. space division	
133.	Inmultiplexing each signal o	hannel is carried on a separate fiber with in a fiber bundle
	[13S07]	
	a. frequency divisionb. space division	
	c. time division	
	d. multi channel	
134.	made [13S08]	fiber meansd the cross coupling between channels can be
	a. zero b. infinite	
	c. negligible	
	1 () ()	

	d. to increase	
135.	Two analyses are usually carried out to ensure that the derived sys by using link power budget and the[14M01]	tem performance can be met
	a. bit-error rate	
	b. system rise time budget analysisc. receiver	
	d. band width	
136.	If the distance over which the data are to be transmitted is not too region [14M02]	far, we may sperate in
	a. 500-600 nm	
	b. 1300-1400 nm c. 200-300 nm	
	d. 800-900 nm	
127	Pin Photo diodes bias voltages are normally less than volts [1	4M021
137.	a. 200	41103]
	b. 300	
	c. 5	
	d. 1	
138.	The system parameters involved in deciding between the use of an	LED and a laserdiode are
	signal dispersion data rate, and [14M04] a. transmission distance, cost	
	b. distance, power	
	c. power, Fiber thickness	
	d. losses, speed	
139.	To increase the end-to end fidelity of an optical transmission line, _	can be used if the
	bit-error rate is limited by optical noise and dispersion [14S01]	-
	a. forward error correction	
	b. slew rate c. systems	
	d. signal-to-noise	
140	The simplest transmission link is a point-to -point line that has a tra	ansmitter on one and and
140.	on the other [14S02]	ansimitter on one end and
	a. point	
	b. receiver	
	c. system d. bandwidth	
141.	If the transmission distance is long, we may operate inr a. 500-600 nm	region [14S03]
	b. 1300-1550 nm	
	c. 200-300 nm	
	d. 600-800 nm	
142.	receiver is simpler more stable with changes in tempe	erature, less expensive
	[14S04]	4121
	a. avalanche photodiode	
	b. pyroelectric c. pin photo diod	
	d. photo transistor	
1/12	Avalanche photodiode bias voltages range are normally from	_ V ito several hundread
143.	volts [14S05]	vito several iluliuleau
	a. 5	
	b. 3	
	c. 40 d. 20	
144.	For low optical power levels photo diode is very usefull	[14S06]
	a. pin b. avalanche	
	c. pyroelectric	
	d. photo transistor	

145.		D01]
	a. 10 Mb/s b. 0.1 Mb/s	
	c. 0.003 Mb/s	
	d. 100 Mb/s	
146.	The link loss expressed in decibels are [15M01]	
	a. $loss=10 log P_{out}$	
	$\frac{1000 \text{ To log}}{(Pin)^2}$	
	b. loss=10 log $\frac{P_{out}}{P_{out}}$	
	Pin	
	c. loss= Fout	
	Pin	
	d. loss= P_{in}	
	Pout	
147	The optical power received at the photo detector depends on t	he amount of light coupled in to the
	fiber and the occurring in the fiber [15S01]	ine uniount of right coupled in to the
	a. losses	
	b. outputc. budget	
	d. link	
148.	A analysis is a convenient method for determining the d	lispersion limitation of an optical
	fiber link [15S02]	•
	a. loss b. power	
	c. rise-time budget	
	d. pulse	
149.	The limit depends on material and modal dispersion	[15S03]
	a. dispersion	
	b. power c. loss	
	d. pulse	
150.	The achievable transmission distances are those that fall below	v the and to the left of the
	dispersion line [15S04]	
	a. dispersionb. attenuation limit curve	
	c. pulse	
	d. material limit	
151.	Greater transmission distances are possible when a Dash is mi	ssing is used in conjunction with
	an avalanche photo diode [15S05] a. Pin photo diode	
	b. Transistor	
	c. Laser diode	
	d. spectral	
152.	uses a set of rules for arranging the signal symbol	s in a particular pattern [15S06]
	a. single mode linksb. encoding	
	c. decoding	
	d. signal encoding	
153.	noise arises when the light from a coherent laser is c	oupled in to a multimode fiber
	[15S07] a. thermal	
	b. modal	
	c. mode-partition	
	d. chirping	
154.	Passive devices operate completely in the optical domain to	and

	_	Split, combine	
		Split, uncombine	
		Zero,one	
		Light, dark	
55.	Th	e technology of combining a number of wave le	engths on to the same Fiber is known as
		multi plexing [16S01]	
		Wave length division	
		Pulse division	
		Frequency division Time division	
	u.	Time division	
56.		ave length dividion multiplexing is same as	multiplexing [16S02]
		Pulse division	
		Frequency division Pulse division	
	d.	Time division	
	u.	Time division	
57.	Wa	ave length division must be properly spaced to	avoid[16S03]
		Noise	
		Thermal	
		Quantum	
	d.	Inter channel Interference	
58	Th	e application of wave length division multiplexi	ng isof existing point -to -
<i>5</i> 0.		int Fiber optic transmission links [16S04]	ing isor existing point -to -
		Capacity upgrade	
		Interference	
		Wavelength	
		Capacity decrease	
59.			arry any transmission Format [16S05]
		Pulse division	
		Frequency division	
	c. d.	Wave length division Quantum	
	fre a. b.	ave length division multiplexing is essentially for equencies [16S06] Low HIgh Optical carrier	MMA
		channel	
61.		wave length division components in	iclude tunable optical filters,tunable
· ·	so		
	a.	Passive	
	b.	Real	
	c.	Active	
	d.	Inductance	
62.	То	prevent spurious signals from entering a receispectral operation [16S08]	ving channel, the demultiplexer must exhibit
	a.	Broader	
		Zero	
		Infinite	
	d.	Narrow	
		components can be fabricated by	means of planar optical wave guides using
63.		aterial such as lithium niobate [16S09]	means of planta optical wave galacs using
63.		_	
	a.	Active	
	a. b.	Active	
	a. b.	Active Passive Lumped	
	a. b. c.	Active Passive Lumped	
	a. b. c. d.	Active Passive Lumped Distributed measures the degree of isolation	on between the input at one port and the optical
63.	a. b. c. d.	Active Passive Lumped Distributed	on between the input at one port and the optical
	a. b. c. d.	Active Passive Lumped Distributed measures the degree of isolation	on between the input at one port and the optical
	a. b. c. d.	Active Passive Lumped Distributed measures the degree of isolation	on between the input at one port and the optical
	a. b. c. d.	Active Passive Lumped Distributed measures the degree of isolation	

	a. Splittingb. Insertionc. Couplerd. Cross talk		
165.	is define as the ratio of the inp [17D02] a. Noise b. Quantum c. Excess loss d. Heat loss	out to the total output power, in a 2X2 o	coupler
166.	Most passive wave length division multiplexi [17M01] a. Normal b. Star - coupler c. Wind - coupler d. Delta - coupler	ng devices are variations of a	concept
167.		n as[17M02]	
3 O O O O O O O O O O O O O O O O O O O	d. $10\log\left(\frac{p_1}{p_0-p_3}\right)$ The phase of the driven Fiber always	behind the phase of the drivin	g Fiber
169.	d. Lags 180 ⁰ The excess loss for a 2×2 coupler is a.	[17M04]	
170.	d. A common fabrication method for an N _X N sp single mode Fibers over length of a few milling a. (N-1) b. (N+2) c. (N-2) d. N	litter is to fuse together the cores of	"Naugus"
	Any size star coupler can be made, in princip during theprocess [17S02] a. Heating b. Coupler c. Coupler- Fabrication d. Gain For a NXM coupler, the coupler has		ed uniformly tputs [17S03]
	MMN.	NNI	N.O.

	a. N, M b. (N-1),(M-1) c. (N+1),(M+1) d. (N-1)(M+1)				
173devices makes the tapers very gradual, so that only a negligible fraction of the					
incoming optical power is reflected back in to either of the input ports [17504]					
	a. Directional couplersb. Tapered coupler				
	c. Fused coupler				
	d. Reverse coupler				
174.		or a particular port - to - port path [17S05]			
	a. Excessb. Splitting				
	c. Insertion				
	d. Coupler				
175.	The attenuation of the cable in decibels by [18D01]	by insertion loss method is			
		MMM. Naudlar			
	a. $A = 10\log \frac{p_1(\lambda)}{p_2(\lambda)}$				
	$P_2(\lambda)$				
	b. $A = \frac{p_1(A)}{A}$				
	b. $A = \frac{p_1(\lambda)}{p_2(\lambda)}$				
	c. $A = 10\log p_1(\lambda) p_2(\lambda)$				
	-, , - , ,				
	d. $A = \frac{p_1}{r}$				
	p_2				
176.	1 1	of the far and near ends of the Fiber, the average loss a in			
	decibels per kilometer is given by	[18M01]			
	a. $\alpha = \frac{10}{L} \log \frac{p_N}{p_F}$				
	$L - p_F$				
	b. $\alpha = \frac{p_N}{N}$				
	p_F				
	c. $\alpha = \frac{10}{10}$				
	$\alpha = \frac{L}{L}$				
	d. $\frac{10}{p_N}$				
	$\frac{L}{P_F}$				
	-	1210.			
177.	of optical power in a Fibe scatlering mechanisms and wave guide e	er wave guide is a result of bsorption processes, Iffects [18S01]			
	a. Dispersion				
	b. Attenuation c. Line loading				
	d. Single mode fibers				
178.	Measuring the optical power transmitted	through a long and a short length of the same fiber			
	using identical input couplings method is a. Attenuation	known as[18S02]			
	b. Cut back technique				
	c. Coding d. Analyzer				
		ctal.			
179.	A less accurate but non destrictive method cables with connectots on them [18503]	od is themethod,which is useful for			
	a. Thermal loss				
	b. Quantum loss				

	d. Heat loss				
180.	The is a destruction a. Attenuation technique b. Cut back technique c. Connectors d. Optical system	uctive method requiring ac	cess to both ends of the Fib	er [18S04]	
181.		erent launch conditions car	n yield different loss values	[18505]	
182.	In insertion -loss method the I	launch and detector coupli	ng are made through		
	a. Pointsb. Jointsc. Couplersd. Separation				
183.	In insertion -loss method,connector between the launch a. Measurment b. Attenuation c. Wave length d. Frequency		f the loss of the cabled Fiber 18S07]	and the	
184.	In cut -back technique, if the s Fiber core, the optical power is a. Side				
	b. Surface c. Center d. Distribution				
185.	For pulse dispersion the Fiber low frequency value for freque a. 1 b. 0.5 c. 3 d. 4			of its	
186.	For pulse dispersion, the r.m.s		e response must be less tha	ın	
	a. Half b. 3				
	d. 1				
187.			signals in optical Fiber, ther	e by limiting	
	 the information - carrying capa a. AQttenuation b. Dispersion c. Insertion d. Cut-back 	acity [19301]			
188.	In multimode Fibers travels a slightly different dist [19S02] a. Inter modal dispersion		he Fact that each mode in a he Fiber end at slightly off s		
	b. Intramodal dispersionc. Chromatic dispersiond. Polarization				
189.	sterms from the v		n speed of the individual wa	ive length	
	a. Chromatic dispersion	Silve			

	b. Intermodal dispersionc. Intramodal dispersiond. Polarization		
190.		arises from the splitting of a polarized signal into orthogonal	
	polarization modes, each of which a. chromatic	h has a different propagation speed [19S04]	
	b. Intermodal		
	c. Polarization		
	d. Intramodal dispersion		
191.	The transfer function of a Fiber of information of the system [19805]	ptic cable is of importance because it contains	—
	a. Gain	' 1	
	b. Band width		
	c. Output pattern		
	d. Input pattern		
192.	Chromatic dispersion is the prima	ary dispersive mechansm is Fibers [19S06]	
	a. Single-mode b. Multi-mode		
	c. Co-axial		
	d. Light		
193.	is the resulting differ	ence in propagation times between the two orthogonal	
175.		ve length will result in pulse spreading [19507]	
	a. Chromatic dispersion		
	b. Polarization - mode dispersion	n	
	c. Phase - shift methodd. Dispersion method		
194.	occurs when light a. Fresnel refletion	eners a medium that has a different index of refraction [1950	3]
	b. Dispersion		
	c. Trace		
	d. Scatlering		
195.	The Pseudorandom binary sequen	nce pattern length is of the form [20M01]	
	a. 2 ^N		
	b. (2*N)		
	c. (2 ^N -1)		
	d. (1-2 ^N)		
196.		m arises from noise in the receiver and puls distortion in the	
	optical fiber [20M02]	_4	
	a. noise		
	b. pattern c. timing jitter		
	d. accuracy		
197.	technique is a simple hu	ut power measurement method for assessing the data-handling	
107.	ability of a digital transmission sy		
	a. dispersion	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	b. eye-pattern		
	c. error d. measurement		
100		should for any hotion the sections of	
198.	Eye patterns has been usd extens also be applied to[205	sively for evaluating the performance of wire systems and can	
	a. eye		
	b. light		
	c. optical Fiber data link		
	d. oscilloscope		
199.	The eye pattern measurements ar	re made in the and allow the effects of wave form	
	distortion [20S03]		
	a. Time domain b. Patterns		
	b. Tatterns		
	b. Fatterns		

	c. Fall time d. reflects		
200.	To measure system performance we be provided [20504] a. time pattern b. word pattern c. fall time d. reflects	vith the eye pattern technique, a varity of	w. Uandista
201.	defines the time interval over from inter symbol interference [20] a. binary sequence b. width of the eye opening c. interval d. pattern	ver which the received signal can be sampled wi	ith out error
3tar . 202.		e peak signal voltage $oldsymbol{V_1}$ for an alternating bit sasured from the threshold level [20S06]	sequence to the
203.		s the sampling time is varied (i e the slope of the r the system to timing errors [20S07]	e eye-pattern
3431.204.	- is defined as the time in reaches 10 percent of its final amp a. fall time b. rise time c. noise d. mid time	nterval betwen the point where the rising edge litude [20S08]	of the signal